PRACTICE FINAL (AGOL) - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. 2) Picture:

1A/Practice Exams/Ladder.png

2) We want to find $\frac{d \theta}{d t}$ when $x=6$
3) We know $\cos (\theta)=\frac{x}{10}$
4) Differentiating, we get: $-\sin (\theta) \frac{d \theta}{d t}=\frac{1}{10} \frac{d x}{d t}$.
5) However, $\frac{d x}{d t}=2$, and if $x=6$, then we get our usual $6-8-10$-triangle, so $\sin (\theta)=\frac{8}{10}=\frac{4}{5}$. Putting everything together, we get $-\frac{8}{10} \frac{d \theta}{d t}=\frac{6}{10}$, so $\frac{d \theta}{d t}=\frac{6}{8}=\frac{3}{4} \mathrm{ft} / \mathrm{s}$
2. Note: I think the problem should say $x>1$

Define $f(x)=x \ln (x)-(x-1)$, by the Mean Value Theorem applied to f at $(1, x)$, we get that there is a $c \in(1, x)$ such that $\frac{f(x)-f(1)}{x-1}=f^{\prime}(c)$. But $f(1)=0$, and $f^{\prime}(c)=\ln (c)+1-1=\ln (c)>0\left(\right.$ since $c>1$), so we get: $\frac{f(x)}{x-1}>0$, so multiplying by $x-1>0$, we get $f(x)>0$, so $x \ln (x)-(x-1)>0$, so

[^0]$$
x \ln (x)>x-1 .
$$
3. 1) The circular piece of paper looks as follows: 1A/Practice Exams/Drinking cup.png

And when you join the edges, your drinking cup should look as follows: 1A/Practice Exams/Drinking cup 2.png

2) You want to maximize the volume $V=\frac{\pi}{3} r^{2} h$, where r is the radius of the cup, and h is the height. But by the Pythagorean theorem, you know that $r^{2}+h^{2}=R^{2}$, so $r^{2}=R^{2}-h^{2}$, so $V(h)=\frac{\pi}{3}\left(R^{2}-h^{2}\right) h$
3) The only constraint is $0 \leq h \leq R$ ($h \geq 0$ is clear, and $h \leq R$ is because we want the side of the triangle to be smaller than its hypothenuse)
4) $V^{\prime}(h)=\frac{\pi}{3}(-2 h) h+\frac{\pi}{3}\left(R^{2}-h^{2}\right)=-\pi h^{2}+\frac{\pi}{3} R^{2}=0 \Leftrightarrow h^{2}=\frac{R^{2}}{3} \Leftrightarrow$ $h=\frac{R}{\sqrt{3}}$. Now $V(0)=V(R)=0$, and $V\left(\frac{R}{\sqrt{3}}\right)=\frac{2 \pi R^{3}}{9 \sqrt{3}}>0$. Hence, by the closed interval method, the maximum volume is $\frac{2 \pi R^{3}}{9 \sqrt{3}}$
4. Let F be an antiderivative of $\ln (x)$. Then $\int_{x^{2}}^{1+x^{2}} \ln (t) d t=F\left(1+x^{2}\right)-F\left(x^{2}\right)$, so:

$$
\frac{d}{d x} \int_{x^{2}}^{1+x^{2}} \ln (t) d t=F^{\prime}\left(1+x^{2}\right)(2 x)-F^{\prime}\left(x^{2}\right)(2 x)=\ln \left(1+x^{2}\right)(2 x)-\ln \left(x^{2}\right)(2 x)
$$

5. The slope of the tangent line to $x=y^{3}$ is $\frac{d y}{d x}$, where $1=3 y^{2} \frac{d y}{d x}$, so $\frac{d y}{d x}=\frac{1}{3 y^{2}}$. And the slope of the tangent line to $y^{2}+3 x^{2}=5$ is $\frac{d y}{d x}$, where $2 y \frac{d y}{d x}+6 x=0$, so $\frac{d y}{d x}=-\frac{3 x}{y}$. Now when the two curves intersect, the slope of the tangent line to the first curve, $\frac{d y}{d x}=\frac{1}{3 y^{2}}=\frac{1}{3 \frac{x}{y}}=\frac{y}{3 x}$ (here, I used the fact that $x=y^{3}$, so dividing by y on both sides, you get $\frac{x}{y}=y^{2}$), is the negative reciprocal of the slope of the tangent line to the second curve, $\frac{d y}{d x}=-\frac{3 x}{y}$! Hence the tangent lines are perpendicular when the two curves intersect!
6. (a) First of all, using the substitution $u=\tan ^{-1}(x)$, with $d u=\frac{1}{1+x^{2}} d x$, we get

$$
\begin{aligned}
& \int_{0}^{1} \frac{\tan ^{-1}(x)}{1+x^{2}} d x=\int_{0}^{\frac{\pi}{4}} u d u=\left[\frac{u^{2}}{2}\right]_{0}^{\frac{\pi}{4}}=\frac{\pi^{2}}{32} . \text { Hence: } \\
& \quad \int_{0}^{1} x-\frac{\tan ^{-1}(x)}{1+x^{2}} d x=\left[\frac{x^{2}}{2}\right]_{0}^{1}-\frac{\pi^{2}}{32}=\frac{1}{2}-\frac{\pi^{2}}{32}
\end{aligned}
$$

(b) $\int_{0}^{2} \sqrt{4-x^{2}} d x=\frac{\pi(2)^{2}}{4}=\pi$ (because the integral is the area of the quarter of circle of radius 2)
(c) Let $u=1+e^{x}$, then $d u=e^{x} d x$, so:

$$
\int e^{x} \sqrt{1+e^{x}} d x=\int \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{3}\left(1+e^{x}\right)^{\frac{3}{2}}+C
$$

7. (a) Domain: $x \neq 0$
(b) Intercepts: None
(c) Symmetry: None
(d) Asymptotes: $y=0$ is a H.A. at $-\infty$ (by l'Hopital's rule), $x=0$ is a V.A. (since $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}=\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{e^{x}}{x}=-\infty$ by direct computation)
(e) Intervals of increase or decrease: $f^{\prime}(x)=\frac{e^{x} x-e^{x}}{x^{2}}=\frac{e^{x}(x-1)}{x^{2}} . f$ is decreasing on $(-\infty, 0) \cup(0,1)$ and increasing on $(1, \infty)$
(f) Local maximum and minimum values: $(1, e)$ is a local minimum by the first derivative test!
(g) Concavity and points of inflection:

$$
f^{\prime \prime}(x)=\frac{\left(e^{x}(x-1)+e^{x}\right) x^{2}-e^{x}(x-1)(2 x)}{x^{4}}=\frac{x^{3} e^{x}-2 x^{2} e^{x}+2 x e^{x}}{x^{4}}=\frac{e^{x}\left(x^{2}-2 x+2\right)}{x^{3}}
$$

But notice that $x^{2}-2 x+1=(x-1)^{2}+1>0$, so the sign of $f^{\prime \prime}$ only depends on the sign of x^{3}. In particular, f is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. There are no inflection points!
(h) Again, whip out your calculator and look at your rough sketch!

8 (a) $f^{\prime}(x)=1-\frac{1}{\sqrt{x}}>0$ when $x>1$, so f is increasing when $x>1$.
(b) Let $y=x-2 \sqrt{x}$, all we need to do is to solve for x in terms of y. The trick is: Let $X=\sqrt{x}$, then $y=X^{2}-2 X$, so $X^{2}-2 X-y=0$, so $(X-1)^{2}+1-y=0$, so $(X-1)^{2}=y-1$, so $X-1=\sqrt{y-1}$ (and this is legitimate, because since f is increasing when $x>1$ by (a), we have $y=f(x) \geq f(1)=1$), so $X=1+\sqrt{y-1}$, so $\sqrt{x}=1+\sqrt{y-1}$, so $x=(1+\sqrt{y-1})^{2}$. Hence $f^{-1}(x)=(1+\sqrt{x-1})^{2}$
(c) We need to show that for all $M>0$ there exists an N large enough such that when $x>N$, then $f(x)>M$.
Let $M>0$ be given, we want $x-2 \sqrt{x}>M$. But notice $x-2 \sqrt{x}=(\sqrt{x})^{2}-$ $2 \sqrt{x}+1-1=(\sqrt{x}-1)^{2}-1>M$, which gives $(\sqrt{x}-1)^{2}>M+1$, hence $\sqrt{x}-1>\sqrt{M+1}$, so $x>(1+\sqrt{M+1})^{2}$.
Now choose $N=(1+\sqrt{M+1})^{2}$, then if $x>N, x-2 \sqrt{x}>x>N=M$, and we're done!
9. The picture is on page 437 !

Shell method: $K=0,|x|=x$, Outer $=2 \sqrt{R^{2}-x^{2}}$ (use the fact that $x^{2}+y^{2}=$ R^{2}), Inner $=0$,

$$
\int_{r}^{R} 2 \pi x\left(2 \sqrt{R^{2}-x^{2}}\right) d x=\frac{4 \pi}{3}\left(R^{2}-r^{2}\right)^{\frac{3}{2}}=\frac{4 \pi}{3}\left(\left(\frac{h}{2}\right)^{2}\right)^{\frac{3}{2}}=\frac{4 \pi}{3} \frac{h^{3}}{8}=\frac{\pi h^{3}}{6}
$$

(use the substitution $u=R^{2}-r^{2}$, and the fact that $r^{2}+\left(\frac{h}{2}\right)^{2}=R^{2}$ by the Pythagorean theorem)

[^0]: Date: Monday, May 9th, 2011.

